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Abstract

A key goal in evolutionary quantitative genetics is to understand how evolu-

tionary trajectories are constrained by pleiotropic coupling among multiple

traits. Because studying pleiotropic constraints directly at the molecular genetic

level remains very difficult, several analytical approaches attempt to draw con-

clusions about constraints by relating the orientation of the eigenvectors of the

traits’ (co)variance matrix to vectors of multivariate selection. On the basis of

explicit models of genetic architecture, I here argue that the value of such

approaches is greatly overestimated. The reason is that eigenvector orientation

can be highly unstable and lack a biologically meaningful relationship with the

underlying traits’ genetic architecture. Genetic constraints are more profitably

explored through experimental approaches avoiding the mathematical abstrac-

tion inherent in eigenanalysis.

Introduction

The major goal of evolutionary quantitative genetics

(EQG) is to understand the rate and direction of evolu-

tion in multiple traits. A pivotal concept here is that traits

generally cannot evolve independently because their

genetic architecture is shared to some extent (Dickerson

1955; Lande and Arnold 1983; Cheverud 1984; Maynard

Smith et al. 1985; Charlesworth 1990; Arnold 1992;

Björklund 1996; Schluter 1996; Blows and Hoffmann

2005; Blows 2007; Agrawal and Stinchcombe 2009;

Kirkpatrick 2009; Walsh and Blows 2009). That is, if a

genetic locus influences multiple traits (pleiotropy), allele

frequency shifts at this locus driven by selection on one

trait will generate correlated responses in other traits.

Genetic covariance among traits caused by pleiotropy can

thus bias the rate and/or the direction of responses to

selection relative to the situation where genetic variance

in each trait is independent. Such bias arising from

pleiotropy (or tight linkage between genetic factors)

represents a form of genetic constraint. Identifying such

constraints, and quantifying their strength, is the major

avenue to understanding multivariate evolution in EQG

(Blows 2007; Agrawal and Stinchcombe 2009; Kirkpatrick

2009; Walsh and Blows 2009).

Unfortunately, empirical information on how pleiotropy

influences patterns of trait variance and covariance (hereaf-

ter simply [co]variance) is very difficult to obtain and

highly incomplete even for model organisms (Maynard

Smith et al. 1985; Barton and Turelli 1989; Roff 2007; Hill

2010), precluding the study of genetic constraints directly

at the level of molecular genetic architecture. For this rea-

son, a common approach taken in EQG investigations of

genetic constraints involves a two-step abstraction away

from molecular genetic architecture: first, trait-specific and

pleiotropic aspects of genetic architecture are summarized

across all genetic factors by estimating the additive genetic

(co)variance matrix G (Fig. 1). Second, G is subjected to

diagonalization (spectral decomposition) to obtain its

eigenvectors (EVs). The EVs are described by their

eigenvalue (quantifying magnitude) and trait loadings

(quantifying orientation) and provide a representation of
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the total variation in G along orthogonal, variance-

maximizing multivariate axes (details given in Fig. 1).

A fundamental but generally tacit assumption in EQG is

that the orientation of G’s EVs still retains a meaningful

connection to the molecular genetic architecture of the

underlying traits. This would permit the interpretation of

key aspects of genetic architecture based on the loadings of

the constituent traits on their EVs, as these loadings define

the orientation of EVs in trait space (Fig. 1). For example,

“The direction of greatest genetic variance (gmax) showed

that genotypes at one extreme of the population had rela-

tively short, slender bodies; narrow mouths; and numer-

ous, long gill rakers” (Schluter 1996, p. 1769). (Note that

gmax is the first EV of G.) A direct and interpretable con-

nection between trait loadings on an EV, genetic (co)vari-

ance among traits, and underlying genotypes is here

assumed (for similar examples see Lande and Arnold 1983,

p. 1222; Renaud et al. 2006, p. 1707).

Based on the general assumption in EQG of a tight link

between genetic architecture and the orientation of EVs, a

family of techniques attempt to infer genetic constraints by

relating the orientation of EVs to measured (or inferred)

axes of selection. These approaches are hereafter called EV-

based approaches to exploring genetic constraints. The best

known of these methods is arguably Schluter’s (1996) test

for “evolution along lines of least genetic resistance” (related

methods are reviewed in Walsh and Blows 2009). Here, the

orientation of the first EV of G (estimated from a popula-

tion assumed to represent the ancestral state) is compared

with the orientation of the vector of multivariate selection

(estimated from observed evolutionary trajectories among

populations). A close directional association between the

two vectors is taken as evidence that multivariate evolution

has been biased by genetic constraints, although alternative

interpretations are possible (Schluter 1996; Berner et al.

2010). The application of this and related EV-based analyti-

cal approaches has become increasingly popular (some

recent examples: Blows et al. 2004; McGuigan et al. 2005;

Renaud et al. 2006; Revell et al. 2007; Berner et al. 2008,

2010; Eroukhmanoff and Svensson 2008; Simonsen and

Stinchcombe 2010; Colautti and Barrett 2011; Leinonen

et al. 2011; Kimmel et al. 2012).

The fundamental assumption of a meaningful connec-

tion between the orientation of G’s EVs and genetic

architecture, however, has been challenged. For instance,

in response to an influential paper championing the use

of matrix diagonalization in EQG (Blows 2007), Cheverud

(2007, p. 15) argues that there “is nothing in the mathe-

matical operation of spectral decomposition […] that has

any necessary relationship with the biology underlying the

traits” (see also Mitchell-Olds and Rutledge 1986; Houle

et al. 2002; Brodie and McGlothlin 2007; Hunt et al.

2007). Surprisingly, such skepticism has had very little

impact in EQG, perhaps because it has been based pri-

marily on verbal argument rather than on evidence from

formal analysis (but see Houle et al. 2002). The goal of

the present study is therefore to demonstrate more

directly that a biologically meaningful link between EV

orientation and genetic architecture, and the corollary

that the former can be used to explore genetic constraints,

suffers potentially severe flaws. I will do so by comparing

EVs with their underlying, explicitly modeled genetic

architecture and the associated G matrix.

Methods

The validity of the assumption that the orientation of G’s

EVs is useful for investigating genetic constraints depends

G
en

et
ic

 
ar

ch
ite

ct
ur

e T1 T2 T3T1 T2 T3

G T1

T2

T3

T1 T2 T3

6.1

5.2 6.7

4.64.9 7.3

T1

T2

T3

T1 T2 T3

6.1

5.2 6.7

4.64.9 7.3

Ei
ge

nv
ec

to
rs λ

T1

T2

EV1 EV2 EV3

T3

-0.64

-0.40 -0.01

-0.71-0.65 -0.28

-0.11

-0.71

-0.03 -0.02

-0.23

-0.92

λ

T1

T2

EV1 EV2 EV3

T3

-0.64

-0.40 -0.01

-0.71-0.65 -0.28

-0.11

-0.71

-0.03 -0.02

-0.23

-0.92

1

3
2

T3

T1

T2

1

3
2

T3

T1

T2

T3

T1

T2

T3

T1

T2

Figure 1. Schematic illustration of the two-step mathematical

abstraction involved in eigenvector-based EQG studies of genetic

constraints. The base level shows three traits (T1–T3) influenced by

multiple genetic loci (gray dots on the thick black lines representing

two different chromosomes). Some of the loci target more than one

trait, hence act pleiotropically. This molecular genetic detail is very

difficult to quantify directly, but can be summarized (first abstraction

step; gray arrow) more easily in the additive genetic (co)variance

matrix G (middle level). A graphical representation of G is given on

the left. Here the dots indicate individual breeding values in T1–T3

space for the sampled population (hypothetical data), and G is

visualized by the ellipse. G is given in matrix form on the right, with

the diagonal elements being trait variances and off-diagonal elements

being bivariate covariances. The second abstraction step involves the

diagonalization of G to obtain its eigenvectors (top level; visualized on

the left). The eigenvectors (EVs) are orthogonal axes (as many as

underlying traits), each described by its eigenvalue and trait loadings

(matrix on the right). Eigenvalues (k) specify the amount of variation

captured by each EV, hence define their magnitudes (maximal for

EV1, minimal for EV3). Trait loadings (ranging from –1 to 1) specify

the collinearity of an EV with the original trait axes, and hence define

each EVs orientation in trait space.

ª 2012 The Author. Published by Blackwell Publishing Ltd. 1835

D. Berner G’s Eigenvectors and Genetic Constraints



on two conditions. First, for a biological system with a

specific genetic architecture, the orientation of the EVs

(or at least the EVs of interest) should be relatively stable.

If this criterion is not satisfied (i.e., if the orientation of

EVs is highly contingent on the specific sample at hand),

comparing the orientation of EVs to directions of selec-

tion will have little biological relevance. Second, trait

loadings, which define an EV’s orientation, should have a

meaningful link to the traits’ (co)variance and correlation

structure, and to the underlying genetic architecture.

Otherwise, interpreting the orientation of EV biologically

(see quotes above) might be misleading, and forging a

link between EVs and molecular genetic variation might

be impossible. The analytical approaches described below

are tailored to explore these two aspects, that is, the

directional stability of EVs, and the relationship between

EV loadings and genetic architecture.

Directional stability of EVs

The stability of the direction of G’s EVs in relation to differ-

ent genetic architectures and to sample size was explored

through a series of simulations. The default simulation

approach involved the generation of a multivariate data set

consisting of 100 individuals with four quantitative traits.

Individual values for each trait were obtained by summing

allelic states (–1, 0, 1; drawn at random with equal probabil-

ity of 1/3) across seven independent genetic loci (Fig. 2A).

This protocol generated exact breeding values for a set of

four approximately normally distributed polygenic traits. In

the default scenario, all traits displayed equal expected levels

of variance, and their expected covariance was zero, produc-

ing an approximately spherical G matrix.

This default genetic architecture was then modified to

model situations with increasingly strong asymmetry

among the traits in their magnitude of variance (hereafter

called the “asymmetry series”). This was achieved by rais-

ing the number of loci determining the first trait (T1) to

10, 13, and 16, while reducing the number of loci driving

T2–T4 to 6, 5, and 4 (the endpoint of this series is

visualized in Figure 2B). The total variance across the four

levels in the asymmetry series thus remained constant.

In a second series (hereafter the “pleiotropy series”), I

modified the default genetic architecture such that an

increasing number of loci (1, 3, 6) were shared among all

four traits. The strength of pleiotropic coupling among the

traits thus increased gradually in this series, while the total

variance again remained constant. The endpoint of this

series, shown in Figure 2C, resembles a situation where a

collection of morphological variables scales strongly with

overall body size due to pleiotropic growth factors.

To examine the effect of sample size on EV stability,

several genetic architectures from the asymmetry and

pleiotropy series were modeled with sample sizes of 50,

200, and 400 in addition to the default sample size

(100). The lowest sample size modeled seems to be rep-

resentative of typical empirical studies: median sample

size (i.e., the number of individuals in phenotypic stud-

ies; the number of full sib families or sires in genetic

studies) across 18 haphazardly chosen EV-based studies

of genetic constraints was exactly 50 (mean 66; maxi-

mum 196).

For each level of the asymmetry and pleiotropy series,

and for the different sample sizes, data generation was

performed in 1000 replicates. Each of the resulting data

sets was used to compute the matrix of additive genetic

(co)variances G, which was subjected to singular value

decomposition to obtain the EVs. Directional stability of

EVs in relation to variance asymmetry, the strength of

pleiotropy, and sample size was then explored by

evaluating trait loadings on the EVs. Note that for these

simulation series, the presentation of results is limited to

EV1, as this leading axis of trait (co)variance is usually

considered the most important (e.g., Schluter 1996), and

because interpreting the other EVs did not produce quali-

tatively different insights.
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T1 T2 T3 T4
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Figure 2. Genetic models used to explore the directional stability of

G’s EVs (A–C), and the relationship between EV orientation (loading

structure) and genetic architecture (D, E). Dots represent genetic loci

determining the traits T1–T4 independently (black), or determining

multiple traits simultaneously (pleiotropy; white). (A) Shows the

default model for both the asymmetry and the pleiotropy series,

that is, genetically independent traits with similar levels of variance.

(B) Represents the most extreme level of asymmetry among traits in

the magnitude of variance, while (C) visualizes the endpoint of the

series modeling increasingly strong pleiotropic coupling among the

traits. In (D), two traits (T1 and T3) are each independently coupled

with T2. (E) is characterized by strong pleiotropy affecting all traits,

and additionally by asymmetry among traits in the magnitude of

variance.
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Relationship between EV loadings and
genetic architecture

Issues in the relationship between the direction of EVs

and their underlying genetics are illustrated by two

examples. In the first, I specified a genetic architecture

involving two genetically independent traits (T1, T3),

each of which was linked to T2 by three pleiotropic loci

(Fig. 2D). T4 was independent from the other traits. The

second example involved four pleiotropic loci influencing

all traits. T1 was additionally determined by six indepen-

dent loci, each of the three other traits by only two

independent loci (Fig. 2E). This scenario thus involved

both strong pleiotropy and asymmetry among the traits

in their magnitude of variance.

To explore the connection between EV trait loadings

and genetic architecture, I calculated the theoretical G

matrix for each of the two scenarios based on the exact

parametric (co)variance contributed by a single locus with

the allelic states given above. (The exact value was 2/3, as

determined empirically by using simulations with very

high sample size.) This matrix was subjected to singular

value decomposition to obtain the EVs. I then assessed

qualitatively the relationship between trait loadings on the

EVs and the trait’s theoretical correlation structure

derived from G. In addition, I plugged each G, along with

a linear selection gradient vector b of 0.5, 0, 0, 0 (selec-

tion on T1 only), into the multivariate breeder equation

D�z ¼ Gb (Lande 1979; D�z is the vector of changes in

trait means over one generation of selection). Comparing

D�z to the trait loadings on the EVs provided an alterna-

tive way to assess whether patterns of trait correlation

indicated by the orientation of EVs had a biologically

meaningful link to trait associations revealed by correlated

responses to selection.

Exploring the robustness of the analytical
approaches

The robustness of the findings emerging from the above

analyses was scrutinized in several ways. First, I modified

the distribution of allelic values of the genetic loci. For

instance, I here considered values drawn at random from

a normal distribution, or allowed different loci to display

different allelic ranges, thereby mimicking quantitative

trait loci (QTL) with different effect sizes. Second, I dou-

bled the number of both the independent and pleiotropic

loci in each scenario. These modifications had no effect

on the outcome of the simulations. I therefore limit the

presentation of results to the allelic values and number of

loci described above.

Second, I modified trait space dimensionality. The 18

EV-based studies mentioned above displayed a median

trait number of nine. I therefore approximated this num-

ber by doubling the number of traits in all scenarios from

four to eight (e.g., by adding four variables similar to

T2–T4 in the asymmetry and pleiotropy series). These

alternative analyses did not produce qualitatively novel

results and are therefore not presented.

Data generation, analysis, and plotting were performed

by using the R language (R Development Core Team

2010). Coding is provided on request.

Results

Directional stability of EVs

The asymmetry series showed that trait loadings on the

first EV, and hence the orientation of this vector, were

poorly defined when traits were genetically independent

and displayed relatively similar levels of variance. The ori-

entation stabilized as the asymmetry in variance increased

(and the sphericity of G thus decreased) (Fig. 3, top).

Similarly, increasing magnitudes of pleiotropic gene

action (leading to stronger correlations among the traits)

rendered the orientation of EV1 increasingly consistent

(Fig. 3, middle). Finally, the stability of the orientation of

EV1 was dependent on sample size (Fig. 3, bottom). For

a typical sample size used in empirical work (N = 50),

trait loadings generally proved relatively inconsistent

across replicate simulations.

Relationship between EV loadings and
genetic architecture

Scenario D modeled two sets of pleiotropic loci, each

influencing T2 and either T1 or T3. This genetic archi-

tecture was mirrored in the traits’ theoretical covariance

and correlation structure (Table 1, top). In particular,

there was a substantial correlation within the trait pairs

T1–T2 and T2–T3, whereas T1 and T3 were uncorrelated.

In line with these patterns, selection on T1 produced a

strong direct response in that trait and a correlated

response in T2, but no responses in the other traits. By

contrast, the orientation of G’s EVs was misleading when

subject to standard biological interpretation. For exam-

ple, EV1 displayed strong loadings by T1, T2, and T3.

This pattern would generally be taken as evidence for

the presence of pleiotropic genetic factors shared among

all three traits. In reality, however, T1 and T3 were

genetically independent, but simply associated with the

same third variable. Similarly, the strong but opposed

loadings of T1 and T3 on EV2 might suggest the pres-

ence of an additional layer of antagonistically pleiotropic

loci influencing this trait pair. Such loci, however, were

not modeled.
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In scenario E, I specified a situation with both strong

global pleiotropy and heterogeneity in the magnitude of

variance among the traits. As expected, this produced

strong correlations among all traits, and selection on T1

caused correlated evolution in all the other traits

(Table 1, bottom). Intuitively consistent with these pat-

terns, all traits loaded substantially on EV1, and this axis

captured a high proportion of the total variance. When

studying morphological traits, EV1 would here typically

be considered a latent size variable determined by pleiot-

ropy among all traits, and the remaining axes interpreted

as size-independent shape axes (e.g., Lande and Arnold

1983; Schluter 1996; Merilä and Björklund 1999). The

substantial loadings of opposed sign on EV2 between T1

and the other traits would thus be taken as evidence for

strong antagonistic pleiotropy between T1 and the other

traits, revealed after partialing out global size-related trait

correlation. This latter biological interpretation is clearly

misleading, as antagonistic pleiotropy was not modeled.

I emphasize that the results obtained from the scenar-

ios D and E are not caused by symmetries built into the

genetic architecture; similar findings emerged when giving

each trait a unique magnitude of variance. Also,

extending these scenarios to include more traits produced

qualitatively similar results (details not presented).

Discussion

Vector-based approaches in EQG rely on the assumption

that the diagonalization of G yields axes that can be used

to infer how genetic (co)variation due to pleiotropic gene

action constrains trajectories of multivariate evolution.

This assumption was here investigated, leading to two

main insights.

First, the orientation of EVs associated with a given

genetic architecture can be highly unstable. Perhaps not

unexpectedly, one important contributor to EV instability

is low sample size. Indeed, the simulations suggest that

the typical sample sizes used in empirical work produce

estimates of G imprecise enough to generate substantial

fluctuation in the orientation of EVs under different

genetic architectures. While estimation error has long

been recognized as a general concern in EQG (Barton

and Turelli 1989; Lynch and Walsh 1998; Pigliucci 2006),

it is generally ignored in EV-based empirical work (for an

exception see Leinonen et al. 2011).

But even with high sample sizes allowing a precise

estimate of the genetic (co)variance structure, the direc-

tionality of G’s EVs will be unstable if the proportion of

total variance (or the residual variance not accounted for

by higher-level EVs) is distributed relatively evenly among

the (remaining) EVs. This will be the case whenever traits

exhibit relatively similar magnitudes of variance, and

when pleiotropy is low (Fig. 3, top and middle). In other

words, irrespective of sample size, it appears that the ori-

entation of EVs is most stable in situations where

EV-based multivariate methodology is least useful. That

is, when each EV is driven disproportionally strongly by a

single trait (for a striking empirical example see Berner

et al. 2010), or by collections of traits that represent

essentially redundant manifestations of the same genetic
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Figure 3. Loadings of the first and second trait (T1, T2) on the first

eigenvector (EV1) across 1000 replicate simulations for three

simulation series. Parametric loadings are superimposed as gray dots.

Top row: gradual increase in the variance of T1 relative to the other

traits (Asymmetry). Values within each panel indicate the parametric

magnitude of variance in T1 relative to each of the other traits (top),

and the parametric proportion of variance captured by EV1 (bottom).

Middle row: increase in the number of loci determining all traits

simultaneously (Pleiotropy). Values within each panel give the

parametric correlation among the traits (top), and the parametric

proportion of variance captured by EV1 (bottom). Sample size in both

the asymmetry and pleiotropy series is 100. Bottom row: example of

a series with increasing sample size (given within each panel). This

series is based on the genetic architecture used to model the second

level of the asymmetry series (i.e., T1 displaying 1.67-fold greater

variance than each of the other traits). Note that to remove

redundancy, the arbitrary polarity of the eigenvectors was always

corrected for by simultaneously multiplying the loadings of both traits

by –1 whenever T1 exhibited a negative loading. This thus coerced T1

(but not T2) to loadings ranging between 0 and 1.
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factors. In both situations, one could argue that responses

to selection might be understood or predicted reasonably

well within a simple univariate framework.

Instability of EV orientation suggests that conclusions

about genetic constraints drawn from a directional

comparison of EVs with multivariate axes of adaptive

divergence or measured selection vectors can be highly

contingent on the available sample; qualitatively different

conclusions might be drawn when using a different sample

from the same biological population. Note that this issue is

not necessarily resolved by analytical approaches consider-

ing variability of EV orientation through resampling (e.g.,

Schluter 1996; Berner 2009). The reason is that when sam-

ple size is low, the orientation of an EV can be relatively

stable across resamples of the same sample due to chance,

even when EV orientation is completely unstable across

independent replicate samples from the same statistical

population (illustrated in Appendix 1).

The second major finding is that even when EVs are

directionally stable, it cannot be taken for granted that

their orientation has a meaningful relationship with the

genetic architecture of the constituent traits, with the esti-

mated (co)variance and correlation structure of the traits,

and with the traits’ responses to selection predicted by

the multivariate breeder framework. The problem is that

the diagonalization of G by definition produces mutually

orthogonal vectors. Orthogonality, however, is simply not

a property of molecular genetic architecture (Mitchell-

Olds and Rutledge 1986; Brodie and McGlothlin 2007;

Cheverud 2007; Hunt et al. 2007; see Berner 2011 for an

analogous demonstration in a morphometric context).

Treating the EVs of G as genetically (as opposed to math-

ematically) independent trait combinations is therefore

flawed, and interpreting EV loadings in genetic or even

functional terms is poor practice. Conclusions regarding

genetic constraints on multivariate evolution drawn in

EV-based EQG studies should be taken with skepticism.

I emphasize that the present investigation does not

demonstrate that the identified analytical difficulties will

necessarily, or equally strongly, compromise any

EV-based analysis of genetic constraints. The problem is,

however, that with complex real-world data, even the

evaluation of eigenvalues and/or the inspection of the

genetic correlation structure among traits might provide

little guidance as to whether the assumption of a

meaningful association between any EV and genetic

architecture is justified.

The findings presented in this study also question the

value of EVs as a bridge between phenotype and genotype

maps (Houle 2010), or as a tool for summarizing pleio-

tropic gene action in multivariate selection analysis

(Lande and Arnold 1983; McGuigan et al. 2011). Subject-

ing collections of traits to eigenanalysis certainly allows us

to identify multivariate composite axes of variation, and

tell us how total variation is distributed among these axes

(Mezey and Houle 2005; Hine and Blows 2006; Blows

2007; Walsh and Blows 2009). But we should not expect

that this exercise will inform on how phenotypes are

related to genotypes, or illuminate the link between fit-

ness, traits, and their genetic architecture (Mitchell-Olds

and Rutledge 1986; Mitchell-Olds and Shaw 1987). An

instructive illustration of the disconnect between EV

orientation and genetic architecture is provided by a

mapping study searching for QTL underlying body shape

differentiation between two stickleback fish populations

(Albert et al. 2008). This study failed to find QTL when

analyzing the principal components (PCs) of shape

variables (note that PCs are obtained by projecting trait

values on the EVs, hence PCs and EVs have identical

orientation). The analysis of the raw shape variables

(avoiding matrix diagonalization), however, identified

many shape QTL, including large effect loci. This high-

lights that EVs are mathematical constructs whose orien-

tation may not have a traceable relationship with genetics.

Table 1. Covariance and correlation structure (Cor, Cov; correlations in boldface), response to selection, and eigenstructure (loadings of the traits

T1–T4 on the eigenvectors EV1–EV4; proportion of total variance given in parentheses) for the scenarios D and E visualized in Figure 2. The multi-

variate response to selection (D�z) is over one generation with a multivariate linear selection gradient b of 0.5, 0, 0, 0 (i.e., selection on T1 only).

Scenario Cor, Cov Response Eigenstructure

D T1 T2 T3 T4 D�z EV1 (0.40) EV2 (0.25) EV3 (0.25) EV4 (0.1)

T1 4.67 2.00 0.00 0.00 2.33 0.50 0.71 0.00 -0.50

T2 0.43 4.67 2.00 0.00 1.00 0.71 0.00 0.00 0.71

T3 0.00 0.43 4.67 0.00 0.00 0.50 –0.71 0.00 –0.50

T4 0.00 0.00 0.00 4.67 0.00 0.00 0.00 1.00 0.00

E T1 T2 T3 T4 D�z EV1 (0.69) EV2 (0.17) EV3 (0.07) EV4 (0.07)

T1 6.67 2.67 2.67 2.67 3.33 0.60 0.80 0.00 0.00

T2 0.52 4.00 2.67 2.67 1.33 0.46 –0.35 0.00 0.82

T3 0.52 0.67 4.00 2.67 1.33 0.46 –0.35 –0.71 –0.41

T4 0.52 0.67 0.67 4.00 1.33 0.46 –0.35 0.71 –0.41

ª 2012 The Author. Published by Blackwell Publishing Ltd. 1839

D. Berner G’s Eigenvectors and Genetic Constraints



If approaches relying on the orientation of EVs are

inappropriate to explore genetic constraints, what alterna-

tives are available? Several EQG methods have been intro-

duced that make use of the summary statistic G, but that

avoid the additional mathematical abstraction inherent in

the diagonalization of this matrix. These methods include

comparing the magnitude of variance in the direction of

evolution to the magnitude of variance in random direc-

tions (Hansen and Houle 2008), or comparing the rate of

adaptation given an observed G matrix to the rate of

adaptation predicted if all traits were genetically indepen-

dent (Agrawal and Stinchcombe 2009). Such approaches

relying on G, however, also face a number of potentially

serious problems (reviewed in Mitchell-Olds and Rutledge

1986; Barton and Turelli 1989; Pigliucci 2006). These

include parameter estimation difficulties mentioned ear-

lier, the instability of the (co)variance structure, the influ-

ence of unmeasured traits, nonadditive genetic effects,

and that identical G matrices can emerge from very dif-

ferent genetic architectures.

To summarize, it may be debatable whether observa-

tional EQG approaches, in general, are the most effective

route to understanding multivariate evolution, or whether

efforts are more profitably invested in manipulative

experimental approaches, such as artificial selection and

the measurement of correlated responses (Mitchell-Olds

and Shaw 1987; Barton and Turelli 1989; Fry 1993;

Brakefield and Roskam 2006; Roff 2007; for examples see

Palmer and Dingle 1986; Bradshaw and Holzapfel 1996;

Mitchell-Olds 1996; Beldade et al. 2002; Conner et al.

2011). Certainly, however, we are deluding ourselves if we

expect much progress in understanding multivariate evo-

lution from the application of methods relying on the

directionality of G’s eigenvectors.
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body shape and armour variation in threespine sticklebacks.

J. Evol. Biol. 24:206–218.

Lynch, M., and B. Walsh. 1998. Genetics and analysis of

quantitative traits. Sinauer Associates, Sunderland.

Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J.

Campbell, B. Goodwin, et al. 1985. Developmental

constraints and evolution. Q. Rev. Biol. 60:265–287.

McGuigan, K., S. F. Chenoweth, and M. W. Blows. 2005.

Phenotypic divergence along lines of genetic variance. Am.

Nat. 165:32–43.

McGuigan, K., L. Rowe, and M. W. Blows. 2011. Pleiotropy,

apparent stabilizing selection and uncovering fitness optima.

Trends Ecol. Evol. 26:22–29.
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Appendix 1. Directional instability of EVs, as

revealed by trait loadings across multiple replicate samples

for a given genetic architecture, might not be apparent

when examining trait loadings across bootstrap resamples

of a specific sample. This is here illustrated based on the

genetic architecture involving four traits with equal

expected variance and no pleiotropy (the default genetic

architecture used for the simulations; see Methods for

details). For this specific genetic architecture, G is spheri-

cal and hence the orientation of EVs is undefined, as

reflected in the unstable loadings of T1 and T2 on EV1

across 1000 replicate samples (panel A; identical to the

left panel of the “Asymmetry” series in Figure 3). The EV

instability seen among replicate samples, however, may or

may not be observed across bootstrap resamples

(N = 1000) of the replicate samples (panels B–F show

selected examples). In B, for instance, the bootstrap trait

loadings mirror high instability of EV1, whereas the con-

sistent bootstrap loading structure in F reflects a highly

stable orientation of EV1. The latter is due to a biologi-

cally trivial deviation of G from sphericity, causing EV1

to capture a slightly greater proportion of total variance

(e.g., 0.36 in the sample underlying F as opposed to 0.3

in the sample underlying B). Qualitatively similar effects

were observed when modeling nonspherical G matrices.

Note that the potential for bootstrap resampling to

underestimate the EV instability inherent in a given

genetic architecture increases as sample size decreases

(and hence the leverage of each specific data point

increases; details not presented).
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